LBNE Target Hall Instrumentation

Bob Zwaska

January 27, 2010

Target Hall Instrumentation

- Additional instrumentation in and near target hall to support beam operation
 - Commissioning
 - ➤ Beam-based Alignment
 - > Beam Permit
 - ➤ Long-term Monitoring
- Interfaces with other instrumentation systems
 - > Primary beam
 - > Systems (RAW, air, temps)
 - > Neutrino beam monitors
- Varying needs of reliability
 - > Every pulse for beam permit
 - ➤ Monthly or yearly for alignment/commissioning
- Software is needed to bring everything together

This is an initial brainstorm — please provide input

Approach

- We have a good base of experience with NuMI
 - > We know its strengths and weaknesses
- Have additional constraints in LBNE
 - ➤ More powerful beam
 - > Possibly higher rate of target change-outs
 - ➤ Would like greater reliability
- Want some additional functionality
 - ➤ Target decay
 - > Better software tools

Quick list of NuMI Tools/Instrumentation

Shape of target and baffle

- Features used
- Cross-hairs on horns, and horn neck
- Baffle thermocouples
- Budal Monitor
- Horn BLMs
- Hadron Monitor
- Muon Monitors
- BPMs
- Profile Monitors
- Toroids
- MINOS Near Detector

"Target Hall" Instrumentation

External Instrumentation

NuMI Target/Baffle Shape

- Target and baffle stack produced high-contrast features
 - > Gap between baffle and target
 - > Horizontal fin
- Beam was scanned across features
- Response measured in instrumentation
- LBNE target may not have these features
 - ➤ We need to get something similar
- Baffle thermocouples: calibrated so that baffle temperature was a measure of beam scraping, and in which direction

NuMI Cross-hairs

- On Horn1 upstream, Horn 2 upstream and downstream
 - ➤ 12 or 36 mm thick in longitudinal direction
- Also used Horn 1 Neck

NuMI Budal Monitor

- Electrically isolated target
- Proton beam kicks off electrons and other charge particles from target segments
- Signal is read out
 - Proportional to beam intensity
 - ➤ Position dependent signal
- We need this on the new targets

Horn BLMs

- Cross-hairs intercept primary proton beam
 - > Target must be out
 - Beam also scatters on Horn 1 neck
- Two ion chambers measures particle spray
 - > One downstream of each horn
 - Signals were not always measureable from background
- This system is needed and needs some improvement

NuMI Hadron Monitor

- Sits at end of decay pipe
- 7x7 pixels
- 1m x 1m
- Helium ionization chambers
 - ➤ 1 mm gap
 - > Continuous flow
- High-radiation area
 - ➤ 10s of GRad
- We need this, but with improvements

NuMI Muon Monitors

- Located in alcoves after beam dump
- 9x9 (2m x 2m) ionization chamber arrays
 - > 3mm gap version of HadMon
- Plagued by gas purity and electronics problems
- Sees hadron contamination form dump
 - > Cause by cracks
 - > TILT FROM PARALLEL!
- Usefulness was never fully demonstrated
 - Probably the regime of the LBNE ND group
 - > Except possibly a target decay monitor

10

NuMI Software

- Raw data was read into ACNET and MINOS data stream
 - ➤ Available for later analysis, however:
 - ACNET dataloggers not ideal for correlating different pieces of equipment
 - MINOS datastream only accessible to experts
- Online analysis was performed with JAS
 - Last-minute contribution from BNL
 - ➤ There had not been enough work planned on software
 - ➤ Many correlations between different pieces of multi-pixel equipment was needed
 - > Decent for monitoring, not for analysis
- Software was a kludge and has not improved much since
 - ➤ Hinders us from performing frequent/detailed studies

JAS Display

NuMI Commissioning

- First "Target Hall" beam task was to shoot the beam down the primary beamline and through chase, with no target
 - > Demonstrate that we can see spot at Hadron Monitor
 - ➤ Pointing of the beam

➤ Worked, but beam was entirely in one pixel

NuMI Beam-Based Alignment

- What would we like to align?
 - > Target & Baffle
 - Meson production varies with amount of material traversed
 - Position of production important for other optics
 - > Horns
 - Focusing depends on positioning and angle
- Procedure
 - Scan proton beam across known features of beamline components
 - Target & Baffle material
 - Horn neck and cross-hairs
 - ➤ Use instrumentation to correlate measured proton beam position with component features
 - Target budal Monitors
 - Loss Monitors in the target hall
 - Hadron and Muon Monitors

Target Alignment

- Proton beam scanned horizontally across target and protection baffle
 - Also used to locate horns
- Hadron Monitor and the Muon Monitors used to find the edges

• Measured small (~1.2 mm) offset of

target relative to primary beam instrumentation.

Budal Monitor Performance

- Horizontal Budal measurement consistent with Hadron Monitor
- Vertical measurement corresponds to baffle aperture – not horizontal fin
 - > Several possibilities to affect Budal signal

- Horn 1 LM sees clean signal due to cross-hair
- Neck also cleanly resolved

Horn 1 Horizontal Position

- Downstream cross-hair not resolvable in first scan
 - > Upstream nub interferes
- Displace scan resolves the nub

Horn 2 Horizontal Positions

- Vertical scan looks for nubs
- Hadron Monitor RMS used for finding DS nub
 - > LM could not extract signal
 - ➤ Not the beast measurement

Horn Vertical Positions

Alignment Results

- Estimate effects on beam as a result of offsets measured
 - > F/N ration is figure of merit
 - ➤ Use parameterization based on simulations
 - \triangleright These are upper bounds as the worst effects are in higher-(v)energy bins
 - \triangleright Error budget is $\sim 2\%$
- If beam were to be initially directed at (0,0) the budget would be exceeded
- However, beam is pointed using the alignment measurements
 - > Target center horizontally
 - ➤ Baffle center vertically
- Larger offsets to optical survey were later found to be associated with settling and thermal variation

Device	Dir.	Offset	Effect	Angle	Effect
Baffle	Horz	-1.2 mm	2.5%	-0.1 mrad	< 0.1%
Baffle	Vert	+1.1	2.2	-0.7	< 0.1
Target	Horz	-1.4	2.5	-0.1	< 0.1
Target	Vert	+0.1	< 0.1	-0.7	0.3
Horn 1	Horz	-1.2	1.1	-0.2	0.3
Horn 1	Vert	+0.8	1.4	+0.3	0.4
Horn 2	Horz	-1.8	1.2	-0.2	< 0.1
Horn 2	Vert	+0.1	< 0.1	-0.4	< 0.1

Device	Dir.	Offset	Effect	Angle	Effect
Baffle	Horz	$0.0 \mathrm{\ mm}$	< 0.1%	-0.1 mrad	< 0.1%
Baffle	Vert	+0.1	< 0.1	-0.7	< 0.1
Target	Horz	-0.2	0.4	-0.1	< 0.1
Target	Vert	-0.9	< 0.1	-0.7	0.3
Horn 1	Horz	-0.0	< 0.1	-0.2	0.3
Horn 1	Vert	-0.2	< 0.1	+0.3	0.4
Horn 2	Horz	-0.6	0.2	-0.2	< 0.1
Horn 2	Vert	-0.9	0.4	-0.4	< 0.1

High-Intensity: Beam Permit System

- Inhibits beam on a rapid basis
- > 200 inputs
- Checks that radiation levels have not been exceeded
 - > Prevents beam from being accelerated
- Beamline components e.g. magnet ramps
 - Can prevent acceleration, but also extraction
- Beam quality in Main Injector
 - > Position, abort gap
- This system may have to take more inputs for LBNE
 - E.g.: from Hadron Monitor

Long-term Running

- Hadron and Muon Monitors can see variations in target and horn
 - However, the detectors drift due to gas and electronics issues
 - ➤ We will need some subset of their functionality for LBNE

• Specific need: Target Decay

NuMI target experience

f/ Jim H.

(ZXF-5Q amorphous graphite)

Gradual decrease in neutrino rate attributed to target radiation damage

Decrease as expected when decay pipe changed from vacuum to helium fill

Target Decay in Muon Monitors

- Ratios of muon monitors seen to vary with target decay
- A simplified muon monitor behind the dump and in an alcove could provide an effective target decay monitor
- We need to be able to monitor target degradation without waiting for data to be processed form the neutrino detector

f/ Laura Loiacono

Needs for External Instrumentation

- BPMs / profile monitors
 - > Precise positions and widths at low-intensity
 - ➤ Able to look within the train
 - NuMI has 6 batches, would be nice to look smaller
 - > Optical survey data needed at time of commissioning
- Everything should be cataloged into ACNET and the datastreams, but we should also have a unified way of looking at the data

Needs for Target/Baffle/Horn Features

- We need some high contrast features in the new target and baffle to align with
 - ➤ Baffle edges are good, but we would like upstream and downstream features to get angles
- Will target edges be enough?
 - > It is larger now, and potentially entirely obscured by the baffle
 - ➤ Need some way to ascertain angle
- We need cross-hairs and/or necks to be resolvable on horns
 - ➤ Should rethink whether there is some way to have a less cluttered aperture
 - ➤ Will cross-hairs survive high-intensity beam?

Needs for Target Hall Instrumentation

- Thermocouples: wherever possible, particularly baffle
- Budal monitor: Yes, working at startup
 - ➤ Other target monitoring? Zero-degree?
- Loss Monitors: Yes, but need to be positioned to resolve features
 - ➤ Also, would be nice to do some continuous monitoring
- Hadron Monitor: Yes
 - ➤ Need higher resolution in middle
 - ➤ Larger coverage generally?
 - ➤ Needs to be made replaceable, and more reliable
- Muon Monitor: Maybe
 - > Detailed muon monitor for physics better left to ND group
 - ➤ We need a simplified, reliable, target decay monitor

Needs for Software

- Need to make sure that ACNET and/or experimental datastream can separate individual events
 - > Timestamps need to be accurate
 - Better yet, have a spill number associated with each datum
- Then, need to be able to extract and correlate necessary data
 - > Reconstructed proton beam position and width at features
 - > Compare different sources of measurement at the same time
 - ➤ Be able to fit complicated, arbitrary functions
- Also, automated scanning would save time and cut down on operator error
- Another monitoring application is needed
 - Can be tested with NuMI beam

Need for Simulation

- The deviation of F/N with component displacement
 - > Vary positions and angles to get parameterization
 - > Important input to get alignment tolerances
 - ➤ Probably need experimental limit on F/N error
- Need simulations of alignment/commissioning and response in instrumentation
 - ➤ Need to get specifications for instrumentation of:
 - Signal strength (particle fluxes)
 - Radiation Damage / Activation
 - Heating

Prototyping/Experimenting

- Several devices need some research and should be prototyped and/or tested with beam in advance
 - ➤ Cross-hair BLM system needs to be tested for noise / calibrated
 - ➤ Hadron Monitor is a difficult device to design
 - Probably needs beam tests and a lot of work
 - Target decay (Muon Monitors) need some testing
- Some of the above could be tested in the NuMI beam
- Some would be better suited to test beams

Summary

- NuMI gives us a solid example for target hall instrumentation
 - ➤ Used for commissioning, alignment, beam permit, and long-term monitoring
- Generally, we still need more and better
 - > Redundant devices
 - ➤ Greater reliability lower barrier to usage
- All of the instrumentation should be, at minimum, repeated
 - ➤ Muon monitor may be simplified to a target decay monitor
- Target/baffle/horn must retain features on which to align
- Software, and integration generally, is needed to make sure all the devices fulfill their purposes

LBNE Target Hall Instrumentation

Bob Zwaska

January 27, 2010